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A method of renormalized expansions in theory of turbulence is developed with the use 
of the Lagrangian position function. The introduction of this function makes it easy 
to express the Lagrangien development of the velocity field. A simple truncation of a 
set of renormalized expansions is shown to lead to an approximation which is com- 
patible with Kolmogorov’s inertial range energy spectrum. 

1. Introduction 
Among attempts to construct a statistical theory of turbulence, there are approaches 

based on systematic renormalized expansions; see, for example, Kraichnan (1977), 
Kaneda (1977) and references cited there. Direct-interaction approximation (DIA) 
(Kraichnan 1 9 6 4 ~ )  is one of the best-known approximations among those which can 
be obtained by simple truncations of such expansions. It is known that DIA has 
several desirable properties (see, for example, Leslie 1973) and that it is in good 
numerical agreement with numerical simulations of isotropic turbulence at moderate 
Reynolds numbers (Orszag & Patterson 1972a, b; Herring & Kraichnan 1972). 

However it is also known that DIA has a fundamental defect in that it cannot repre- 
sent the inertial range properly. This may be because the expansions (and con- 
sequently DIA also) are constructed in terms of Eulerian multiple-time correlation 
functions which are greatly affected by the behaviour of big eddies. This failure of 
DIA suggests the importance of a suitable choice of the quantities in terms of which 
the renormalized expansions are constructed (see Kraichnan 1964c, 1977). Hereafter 
we call such quantities representatives, in the hope that if they are chosen suitably 
then approximations accurately representing the physics may be obtained. It is 
desirable to develop a simple method of renormalized expansions baaed on a suitable 
choice of the representatives. 

One of the natural choices of such representatives is that of Lagrangian correlation 
functions, as used by Kraichnan in deriving the Lagrangian-history direct-interaction 
(LHDI) or the abridged Lagrangian-history direct-interaction (ALHDI) approxi- 
mation (Kraichnan 1965a, 1977). To avoid the complexities accompanied with 
the use of fully Lagrangian equations of motion, he has introduced a generalized 
velocity field u,(x,tls) defined as the velocity measured at time s in the fluid 
element whose space-time trajectorypasses through (x, t ) .  He called t and s inuz(x, t ( s )  
the labelling and measuring time, respectively. The Eulerian velocity u,.(x, t )  is 
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ui(x, t l t )  afid the usual Lagrangian velocity is ui(x, O l t )  if t = 0 is the initial time. The 
generalized field obeys 

a a 
- Ui(X, 4 s )  = - Uj(X, t )  - u*(x, tls), 
at 8% 

(1.1) 

which we call here labelling-time transformation (LTT). In his approach the field 
u,.(x, t l s )  is a fundamental quantity and LTT (1.1) plays basic roles. 

We call here a time derivative with respect to labelling time keeping measuring time 
fixed a 'labelling-time derivative' (LTD), and that with respect to measuring time, 
keeping labelling time fixed, a 'measuring-time derivative' (MTD). The time derivative 
in (1.1) is a LTD. In the procedures of the LHDI/ALHDI formalism, the use of 
equations describing MTD's is avoided. The resulting LHDI/ALHDI approximation 
does not contain MTD. 

In this paper a method of renormalized expansions is proposed with the use of 
the Lagrangian position function $ defined by 

(1.2) 

where 83( ...) is the three-dimensional Dirac function and y(x', t ' l t )  is the position at 
time t of the fluid element whose space-time trajectory passes through (x', t ' ) .  It is 
well known that in an incompressible fluid $ obeys 

@(x, t ;  x', t ' )  = P ( X  - y(x', t ' l t ) ) ,  

a a - $(x, t ;  x', t ' )  = - Ui(X, t )  - $(x, t ;  x', t ' ) .  
at % 

Clearly the field ui(x, tls) is given by 

u,(x, t J 8 )  = Jd3X"UI(X",S)  $(x", 8 ;  x, t ) .  (1.4) 

The relation (1.4) is known to be useful for studies of Lagrangian correlation 
functions. 

In distinction to Kraichnan's approach, in the present one the field ui(x, tls) is not 
regarded as a fundamental one. It is separated into ui(x, t )  and $ fields as in (1.4). 
The introduction of $ makes it easy to express various quantities, for example MTD's 
(e.g. au,(x,tls)/as, cf. (2.16)) the use of which has been avoided in the LHDI/ALHDI 
formalism. In  8 2, with the use of $ we construct renormalized expansions by pro- 
cedures similar to those of Kraichnan (1977). 

We must note here that the time derivative which appears in the usual Lagrangian 
equation of motion is taken with respect to measuring time (i.e. au,(x,tls)/as). 
Lagrangian mechanics corresponds to integrating with respect to measuring time 
keeping labelling time fixed, and MTD's may be regarded as containing essential 
information on Lagrangian mechanics. Hence, from the viewpoint of studying 
Lagrangian properties, it is interesting to construct an approximation based on 
equations describing such derivatives. The approximation in 5 2 is in fact constructed 
on the basis of such equations (cf. (2.19) and (2.20)). In  this point and with bhe 
difference of the choice of representatives, it is fundamentally different from the 
LHDI/ALHDI approximation. 

Moreover, throughout the whole procedure of the construction, we need not use 
LTT (1.1) and there appear naturally only correlation and response functions 
(U, a, UO, Uo, etc.) which have only two, not four, time arguments. Hence there is no 



Renormalized expansions in the theory of turbulence 133 

need to invoke changes of time arguments like relabellings as done by Kraichnan. 
Furthermore, there is no need to introduce a fictitious compressible field. These facts 
simplify the construction of the expansions. 

A simple truncation of expansions thus obtained yields a closed set of approximate 
equations which resembles (but is not identical with) Kraichnrtn's test-field model 
(TFM) approximation (see Kraichnan 1971, $ 4 ;  or Leslie 1973, cha. 11)). In  the case of 
homogeneous and isotropic turbulence, it  reduces to a fairly simple form. In  $4, we 
discuss about a model representation in a statistically stationary case concerned with 
this form. In  $ 3 ,  we estimate the Kolmogorov constant based on the present 
approximation by assuming, following Kraichnan ( 1965 b ) ,  Gaussian time dependence 
of the velocity correlation and averaged response functions. In $ 5 ,  we discuss the 
alternative choices of representatives other than that in $ 2.  

2. Renormalized expansions and truncated approximation 
In  this paper we assume the fluid to be incompressible. After the elimination of the 

pressure term by the use of the incompressibility condition, we may write the 
Navier-Stokes equation in the form 

and rewrite (1 .3 )  as 
a a 
- $(x, t ;  x', t ' )  = - ht$.(x, t )  - $(x, t ;  x', t ' ) ,  at axj 

$(x, t ' ;  x', t') = 63(x - x'). 

(2 .2 )  

(2 .3 )  

Here the parameter h = 1 is introduced for later convenience, v is the kinematic 
viscosity and 

(2 .4 )  

where 

Pijm(V1) = ejw a/%,' + % , ( V X )  a / a q ,  
Pij(Vx) = 6ij - nij(VX), 

and, for any g(x), 

The integration in (2.5) extends over the whole volume occupied by the fluid. D(x, y) 
has zero normal derivative on the buundaries and satisfies 

vp(x ,y )  = 63(x-y). ( 2 . 6 )  

In  ( 2 . 1 )  the contributions from the surface boundary integrals are assumed to be 
negligible. As for the derivation of (2 .1 )  connected with the boundary conditions, see 
Kraichnan (1964b, 1 9 6 5 ~ ) .  

We introduce here two quantities as candidates for the representatives discussed in 
4 1 .  One of them is the two-time two-point velocity correlation function defined by 

qj(x, t ;  x', t ' )  = ({/d3~"ui(~", t )  $(x", t; X, t ' ) } U j ( X ' ,  t')) ( t  3 t ' ) ,  ( 2 . 7 ~ )  

which may be written as 

iqj(X, t ;  x', t') = (u;(x, t ' l t )  Uj(X', t ' ) )  (t 2 t ' ) ,  (2 .7b )  
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by virtue of (1.4). The other is the averaged Lagrangian infinitesimal response function 
defined by 

(2.8) 
where 

Gi,(X, t ;  x', t ' )  = (&,(X, t ;  x', t ' ) ) ,  

QX, t ;  x', t ' )  = 8{jd3X"Ui(X", t )  $h(x", t ;  x, t')}/8fj(X', t ' )  

= 8Ui(X, t'lt)/djj(X', t ' )  

(2.9a) 

(2.9b) 

= jd3x"{B$(x", t ;  x', t ' )  $h(x", t ;  x, t ' )  + UI(XM, t )  Y,(x", t ;  x, x', t ' ) }  
(t > t ' ) ,  ( 2 . 9 ~ )  

&(x,t; x',t') = 0 (t < t ' ) ,  (2.9d) 

in whichfi(x, t)  is an arbitrary source term added to the right-hand side of (2.1) and 
(&/a) denotes functional differentiation, @ is the Eulerian infinitesimal response 
function defined by (cf. Kraichnan 1964b) 

Q$(x", t ;  x', t ' )  = dU,(X", t)/Sf,(x', t ' )  (t 2 t ' )  (2.10) 

= 0 (t < t ' ) ,  

and Y, is defined by 

Y,(x", t ;  x, x', t ' )  = B$(x", t ;  x, t')/S.,(x', t ' )  ( t  2 t ' )  (2.11) 

= 0 (t < t ' ) .  
The function 6: obeys 

[ a p t  - VV:] @(x, t ;  x', t ' )  = - A ~ ~ J V ~ )  [UJX, t )  &,(x, t ;  XI, t ' ) ]  (t > t ' ) ,  (2.12) 

and 

While Yj obeys 
@(x, t + 0; x', t )  = B3(x -x') dij. (2.13) 

a a 
- Yj(X", t ;  x, x', t ' )  = - h U,(X", t )  7 Yj(X", t ;  x, x', t ' )  
at 8% 

(2.15) 

(t > t ' ) ,  (2.14) 1 a 
ax; 

Y,(x",t; x,x', t ' )  = 0 ( t  < t ' ) .  

+ Q;,(x", t ;  x', t ' )  - +(x", t ;  x, t ' )  

and 

By using (2.1), (2.2) and (1.4), we can write the MTD of u,(x,tls) as 

(2.16 a)  

&(x, 4 8 )  = Vpx"{[v: Ui(X", s)] $(x", 8 ;  x, t ) }  



R e m m l i d  expansions in the theory of turbulence 135 

Similarly, by using ( 2 . 9 ~ )  and (2.1), (2.2), (2.12), (2.14), or from (2.16), we obtain 

a 
at 
-&(x,t; x',t') = lpx"{[V$8&x",t; x',t')]+(x",t; X,t')} 

- A  a3xR (em,(vf) [u,(x", t )  &:,(X", t ;  x), t73) +(x", t ;  x , t f )  

+ v ~ a ~ ~ " { [ ~ : ~ ~ ( ~ " , t ) ] ~ , ( ~ " , t ;  x,x), t f ) }  

- A  a3x" (+IL(v~) [UJX", t )  U,W t)3) Y,(x", t ;  X, x', t ' )  

Y,(x", t ;  x, x', t ' )  

S (  
+ 8$(x", t ;  x', t ' )  U,(X", t )  a +(x", t ;  x, t ' ) )  

S (  
+ U W ,  t )  [ U*(X", t )  

+ &,(x", t ;  x', t ' )  I) +(x", t ;  x, f ' ) ] )  

($ - vvt - vvt. q , (x ,  t ;  x', t )  = - !$({GmnW [um(x, t )  1 

axm 

a 

(2.17a) 

= OJC3(x,t; X',t') (t > t ' ) .  (2.17b) 

a 
axln 

From the above relations, we have 

t)I}u,(x', t )  

+ U A X ,  t )  {q?tan(vX4 [Um(X', t )  u,(x', t)I)) 
= Aij(X, t ;  x', t ) ,  (2.18) 

a -V,(x,t; x',t') =(L,(~,t'It)u,(~',t')) B+j(x,t; x',t') (t > t ' ) ,  (2.19) 
at 

and 

(2.20) 
a - G,,(x, t ;  x', t ' )  = (O$,(X, t ;  x', t')) at C,(X, t ;  x', t ' )  (t > t ' ) .  

It is to be noted here that the time derivatives in (2.19) and (2.20) are MTD's; see 
(2.7b) and (2.9b). Our q,(x, t ;  x', t ' )  and Gij(x, t ;  x', t ' )  are respectively identical with 

U,(x, t ' lt;  x', t'lt') and Gi,(x, t ' l t ;  x', t'lt'), (2.21) 

in Kraichnan's notation (cf. Kraichnan 1965a). Here t 2 t' and U and G in (2.21) 
are respectively different from 

V,(x, t i t ;  x', t l t ' )  and Gi,(x, t l t ;  x', tlt') with t 2 t ' ,  (2.22) 

which may be regarded as the representatives of the ALHDI approximation. The 
time derivatives in (2.19), (2.20) and those in the time-displaced correlation and 
response equations of the ALHDI approximation are all taken with respect to t 
(not t ' )  in the notation of (2.21) and (2.22). As noted above those in the former are 
MTD's, while those in the latter are not. 

For simplicity's sake, we suppose here that the distribution over the ensemble of the 
initial Eulerian velocity ui(x, to) is homogeneous, isotropic and Gaussian with zero 
mean. More general distributions can be handled but they would add complications in 
which we are not interested here. 
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By the use of (2.2) and the Navier-Stokes equation (2.l), our renormalized expan- 
sions can be constructed by steps similar to those of Kraichnan (1977). Let u!(x, t )  be 
the solution of the linearized Navier-Stokes equation (nonlinear terms removed), 
8Go(x, t ;  x‘, t ‘ )  be the Eulerian infinitesimal response function of the linearized 
equation and define the correlation function 

(2.23) 

Sinceu!(x, t )  decays linearly from ui(x, to), any moment of uO( = u:(x, t ) )  can be expressed 
in terms of the correlation UEO. The linearization of (2.2), with the right-hand side set 

(2.24) 
to zero, gives simply 

@ . = G p = @  11 a j  =CEO .Li 9 (2.25) 

UT(x, t ;  x’, t ’ )  = (u!(x, t )  q x ’ ,  t ’ ) )  ( t  2 t ’ ) .  

$O(X, t ;  x’, t ’ )  = &3(x-x’), 
and consequently A A 

and 
U$O(x,t; x’,t’) = U;j(x,t; x’,t’)  (t 2 t ‘ )  

= U$(x’,t’;  x,t)  (t < t ’ ) ,  (2.26) 

where the superscript zero refers to linearized solutions. If the nonlinear terms in the 
Navier-Stokes equation (2.1) and the right-hand side terms in (2.2), (2.12) and (2.14) 
are re-introduced as perturbations, an iteration process gives ui(x, t ) ,  $(x, t ;  x’, t ‘ ) ,  
&$(x, t ;  x’, t ‘ )  and Yj(xn, t ;  x, x‘, t ‘ )  as functional power series of uo, dEo and $O. Here, 
from (2.24) $0 is known to be equal to a &-function, and from (2.25) GEo = GO. Hence 
we can expand u, $, QE and \r in terms of uo and GO, and consequently can obtain the 
expansions of qj(x, t ;  x’, t’) and Qij(x, t ;  x’, t ’ ) ,  see (2.7) N (2.9), in functional powers 
of U& and qj. 

Because of the homogeneity, the correlation function U and the averaged response 
function G depend on the arguments x and x’ only in the combination x - x’. Hence we 
introduce the wave-vector functions 

Uij(k, t ,  t ’ )  = (27r-3Jqj(x, t ;  x’, t ‘ )  e-ik.(x-x’)d3(x - x’), (2.27) 

Gij(k, t ,  t ’ )  3 /Gij(x, t ;  x‘, t’)e4.(X-X’)d3(~-x’). (2.28) 

The wave-vector functions corresponding to A , ,  Bij,  Ufjo, Uti and Cij, GP, Gj are 
defined similarly to (2.27) and (2.28) respectively. 

Now it is convenient to introduce, as representatives instead of Qj and G,,, the 
following projected quantities : 

Qij(k, t ,  t ’ )  P,n(k) Unj(k, t ,  t ’ ) ,  (2.29) 

&j(k, t ,  t ’ )  qm(k) Gm,(k, t ,  t ’ )  pnj(k), (2.30) 

where the projection operator &(k) is defined by P,,(k) 3 Sin - ki knlk2. By the 
application of this operator, the solenoidal conditions of Q, F, Qo and FO, e.g. 
ki Qij(k) = kj Qij(k) = 0, are satisfied. It is clear that 

f.&(k) = U!,(k) and F&(k) = P,,(k) Gij(k) = @,(k) Pnj(k). (2.31) 

In order to compute Qij(k, t ,  t ‘ )  and C,(k, t ,  t ’ )  from (2.18) N (2.20), it  is necessary 

Gn(k)Anj(k,t,t) (=A+j(k,t,t)), (2.32) 

e a ( k )  Rnj(k, t ,  t ‘ )  ( = B,,(k, t ,  t ‘ ) )  (2.33) 

to know 
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and em@) Cm,(k, t ,  t ' )  P,j(k) ( 4 j ( k  t ,  t ' ) ) .  (2.34) 

In  the same way that we can expand qj(x, t ;  x', t ' )  and Bij(x, t ;  x', t ' )  in functional 
powers of U&(x, t ;  x', t ' )  and qj(x, t ;  x', t ' ) ,  we can expand Q,,(k), F,,(k), A,,(k), 
Bij(k) and Cij(k) in functional powers of U&(k) and q,(k). We note that, in these 
expansions, @,(k) is always accompanied with the projection operator PJk), i.e. it 
always appears in the form @,(k)Pn3(k). Hence, by virtue of (2.31), they can be 
expanded in functional powers of t&(k) and F&(k). 

A baaic idea of our renormalized expansions lies in expanding A,  B and c in terms of 
Q andP  (not in terms of Qo and PO). The steps outlined as (i), (ii) and (iii) in Kraichnan's 
(1977) paper are applicable also to the present case with suitable changes of a few words 
as follows. 

(i) Invert the developments for Q and F by iteration to yield expansions for Qo 
and Po. 

(ii) Snbstitute the latter expansions for each Q O  and FO factor in the primitive 
expansions for A, B and c. 

(iii) Multiply out and collect terms. 
It is worthwhile to note that our Qo, PO, Q and P have respectively only two, not four, 
time arguments and that we need not invoke changing of time arguments like 
relabelling as done by Kraichnan. 

By these steps, we obtain, after straightforward calculations,t 

(a/at + 2yk2) Qij(k, t ,  t) = h2Dij(k, t, t ) ,  (2.35) 

(2.36) 

(2.37) 

(a/at)  Q,j& t ,  8 )  = - vX,j(k, t ,  8 )  + A2&(k, t ,  8 )  

(a/&') Fij(k, t ,  8 )  = - v&j(k, t, 8 )  + Ae&j(k, t, 8 )  

(t > 8 ) ,  

(t > a) ,  
where 

Dij(k, t ,  t )  = Hij(k, t ,  t )  +Hji( - k, t ,  t )  + O(A), (2.38) 

(2.39) 

(2.40) 

(2.44) 

(2.45) 

t Copies of pages giving the algebraic details are available on request from either the author 
or the Editor. 
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and the operator notation 
A 

P, r 
C = IdspdJr6(k-p-r), 

is used. 

(2.46) 

We have assumed homogeneity in deducing (2.35) N (2.37). If the turbulence is also 

md (2.47) 

where Q and F on the right-hand sides are scalar functions of scalar variables. Now we 
substitute (2.47) into (2.35) N (2.37) and contract them. Then by discarding terms of 
O(A) in (2.38) N (2.43), we obtain the following energy, time-displaced correlation and 
response equations (see the footnote to page 137); 

(2.48a) 

(2.48 b)  

( 2 . 4 8 ~ )  

isotropic, we may write 

Q&, t ,  4 = P , j W  Q(k,  4 4 / 2  E;j(k, t ,  8 )  = P,,W F(k,  t ,  4, 

( a p t  + 2vk2) Q ( k ,  t, t )  = D(k, t ,  t ) ,  

( a p t  + Vk2+ q(k, t, 8 ) )  Q(k ,  t ,  8 )  = 0 (t > s), 

(a/at + vk2+ ~ ( k ,  t ,  8 ) )  F(k ,  t ,  8 )  = 0 ( t  > a),  
where 

and 

Here //A denotes the integration over all regions of the ( p ,  r )  plane such that k,p,  r 
can be the sides of a triangle, and the geometrical factors are 

W,p, r )  = ( p / k )  (ZY + Z S ) ,  (2.51) 

d(k,p,r)  = ( l -y2)(1-z2) ,  (2.62) 

where x, y,z are cosines of the interior angles opposite the triangle sides k , p , r ,  
respectively . 

Equations (2.483) and ( 2 . 4 8 ~ )  with F(k,  t + 0, t) = 1 give that 

Q(k, t ,  8 )  = FW, t ,  4 Q(k, 8,s) (t > 4, (2.53) 

and that Q ( k , t , e )  and F ( k , t , s )  is always positive (of course, we are here assuming 
Q(k, 8 , ~ )  to be positive). Also, (2.52) gives d ( k , p ,  r )  2 0. Hence Q(K, t ,  8 )  and F(k,  t ,  8 )  

decrease monotonically with t .  
It is interesting to note the resemblance of our approximation (2.48) to Kraichnan's 

test-field model (TFM) approximation. The energy equations of both the approxima- 
tions are similar to that of DIA. Half of the geometrical factor d ( k , p ,  r )  given by (2.62) 
is equal to 3&, which appears in the TFM approximation. We note here a comment 
due to D. C. Leslie (private communication); the time structure 

r ( k ,  t ,  8 )  Q(k, t ,  4 (2.54) 

in (2.48) is intermediate between that of DIA 

j r (k ,  t ,  8') Q(k ,  8'9 5 )  ds' (2.56) 
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and that of the TFM approximation 

rl(k, t )  Q(k t ,  8 ) .  (2.56) 

We conclude this section with the discussion about the renormalization of the $field. 
As is clear from the above discussions, we have not introduced the renormalization 
corresponding to the $ field. However, it is natural to ask why not. Although the 
main remon for not doing so is for the sake of simplicity, there is another reason. To 
see this point, let us consider the renormalization corresponding to 4. 

At first, it  is to be noted that ($) is not a suitable representative because it is 
essentially affected by big eddies. As we have introduced U and C given by (2.7) N (2 .9)  
instead of the Eulerian correlation function (uu) and response function(&), a natural 
candidate for the representative corresponding to the $ field would be, for exampIe, 

Q,(x, t ;  x', t') = ( p x "  $(x", t ,  x, t ' )  $(x", t ;  x', t')). (2.67) 

If we introduce Q, as well as & and P as representatives, the renormalization 
procedure will be as follows. 

(i) Expand &, P and Q, in terms of &O, PO and 0 0  = $O. 

(ii) Invert the above expansions to obtain Qo, Po and 0 O  in terms of &, F and Q,. 
(iii) Substitute these expansions for Q O ,  PO and 0 0  into the primitive expansions for 

in (2.32) 

Q,(x,t; x',t') = 83(x-x') = $O(x,t; x',t').  (2.68) 

Consequently the resulting approximation would be the same one as that without 
introducing Q,. This is another reason why the renormalization corresponding to 
the $ field has not been introduced above, 

the 'triple moments', where 'triple moments' means terms like A,  B and 
N (2.34). However, it  is clear that 

3. Estimation of Kolmogorov constant 
In  this section we consider the statistically stationary inertial range. If, according 

to Kolmogorov hypotheses, the inertial range forms of &(k,t ,s)  and P(k, t ,s)  
are required to depend only on k,  E and t - s, then they may be written in the forms 

where 7 = dk%( t  -s), E is the rate of energy dissipation per unit mass and K is a 
universal constant called the Kolmogorov constant. 

The substitution of (3.1) into (2.48b, c) yields equations for q(7) andf(7). By noting 
(2.53), we may put q(7) = f(7) (7 > 0) .  However it is still not an easy task to solve them. 
Hence, following Kraichnan (1966b), we assume here Gaussian time dependence of 
q(7) andf(.r), i.e. 

(3.2) 
and assume 

q(7) = exp { - inuV>, f(7) = exp { - in/?V) (7 > O ) ,  
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where 

is the right-hand side of ( 2 . 4 8 ~ )  and k, is an inertial range wavenumber. As noted 
above it is clear that q(7) =f(7) ,  i.e. a = /3. By integrating (2.48b) or (2 .48~)  with 
respect to t from s to 00 with the substitution of (3.1) and (3.2), we can find the value 
of a 2 / K ,  whereas we can find the value of a / K 2  from (3,3) by setting the initial time to 
a t  -00. From these values, the constants a = /3 and K can be calculated. It is 
worthwhile to note that, with the substitutions (3.1) and (3.2) into (2.48b, c) and (3.3), 
the integrations over p and T in them can be shown to converge properly at zero and 
infinite wavenumbers. Edwards (see Leslie 1973, cha. 6) has shown the importance of 
such a kind of convergence in connection with the inertial range forms of DIA. 

After transforming (3.3) to a form convenient for the numerical calculation (cf. 
equation (5.10) in Kraichnan 1966), the above values were calculated numerically. 
Some details of the numerical calculations are shown in $ 5 .  The calculations gave 

K = 1.61, a = /3 = 0.81. (3.4) 

Experiments are known that suggest that K is nearly 1.5 (see Leslie 1973, cha. 11).  

4. An almost-Markovian model representation in a statistically stationary 
turbulence 

Up to now we have not introduced an external driving force for simplicity’s sake. 
However, if we want to permit statistically stationary turbulence, the introduction is 
necessary. We assume here that this force is represented by an additional divergence- 
free term Ei(x, t)  to the Navier-Stokes equation (2.1), and we restrict Ei to be a homo- 
geneous isotropic and Gaussian white noise process with zero mean and correlation 
proportional, in the wavevector space, to Z ( k ,  t) (cf. (4.9)). It isnot difficult to generalize 
the discussions of S 2 to include such a case. As for the energy equation (2.48u),we have 
only to add to it one term proportional to Z ( k , t ) ,  cf. (4.10). The time-displaced corre- 
lation and response equations (2.48 b), ( 2 . 4 8 ~ )  are unaltered. Wedenote theseequations 
by (2.48u’), (2.483’) and (2.48c’), or simply as (2.48’). 

It is easy to construct a model representation of (2.48’) in a statistically stationary 
state, in which the velocity amp1itude:obeys a generalized Langevin equation similar 
to the almost-Markovian model amplitude equation proposed by Kraichnan (197 1) .  
Generalized Langevin models were also discussed by Leith (1971) and Herring & 
Kraichnan (1  972). 

Let us consider the following model equations in wavevector space: 

where 
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(&(k, t )  r j c  - P, t ) )  = (tl(k, t )  r;( - P, t ) )  = (u,(k, t )  uj( - P, t)>, (4.6) 

(w(t)w(t’)) = 26(t-t’), (4.7) 

and the form of q(k, t ,  t ’ )  is given by (2.50). Here w(t)  is a white noise process, 

and the random fields 6, and (; are statistically independent of each other and of the 
initial velocity field ui(k, t = to) .  The correlations in (4.6) are zero if k =+ p. The field 
ui(k, t )  is assumed to be isotropic and homogeneous. The velocity correlation function 
Q(k, t ,  t ’ )  is defined by 

(L/%)’(ui(k, 1’11) ~ j (  - k, t‘)) = &qj(k) Q(k, t ,  t ’ )  (t 2 t ’ ) ,  (4.8) 

and &(k, t )  = &(k, t ,  t ) ,  where L is the cyclic box size ( L  --f CO, eventually). The external 
random force E,(k,t) is assumed to be a white noise process with zero mean and 
correlation 

where S,,, = 1 if k + p = 0 and a,,, = 0 if k + p + 0. The coefficient O(k,p, r ,  t )  will 
be determined below. 

(L/2n)’(Ei(k,t)Ei(~,t)) = 2P,j(k)Z(k,t) $+pS(t-t’) ,  (4.9) 

Equations (4.1) and (4.2) give the energy equation 

[a/at + 2vk2 + 2C(:(k, t ) ]  &(k, t )  

= 2 ~ ( k ,  t )  + 2n/IA a(k,  p ,  r )  ~ , p ,  r ,  t )  ~ ( p ,  t j  W, t )  kpr dp  dr,  (4.10) 

where a(k ,p ,  r )  = ){b(k,p, r )  + b(k, r , p ) } ,  and the time-displaced correlation equation 
which is identical in form to (2.48b‘). If we define the averaged response function F as 

(4.11) 

wheref,(k, t )  is an arbitrary source term added to the right-hand side of (4.2), then it is 
clear that F(k,  t ,  t ‘ )  also satisfies an equation identical to (2 .48~’) .  In a statistically 
stationary case, we have from (2.48b’) and (2 .48~’)  

Gm(k)(dum(k, t’(t)/dfj(k, t ’ ) )  = ej(k) P(k, t ,  t ’ )  (t 2 t ’ ) ,  

Q(k, t , t ’ )  = F(k, t , t ’ )Q(k , t ’ )  = F(k , t , t ‘ )Q(k , t )  ( t  > t ’ ) ,  (4.12) 

where we have used &(k, t )  = Q(k ,  t ’ ) .  Hence, if we put 

(4.13) 

then (4.10) takes precisely the same form as (2.48a‘). Thus in a statistically stationary 
case we can construct a model representation of (2.48‘). 

Now let us define the Eulerian velocity correlation function QE as 

QE(k t ,  8) 3 (u,(k, t )  ui( -k, 8)) (L/2nI3, (4.14) 

and consider the characteristic decorrelation times rE of QE(k, t ,  s) and+ of Q(k,  t ,  s) 
for k in the inertial subrange. By applying similar arguments to those of Q 3, we can 
show that the integration in (4.4) over p and r diverges a t  the low-r limit with the 
substitution of the inertial range form o f &  and F ,  cf. (3.1), (3.2), while that in q (see 
(2.50)) converges properly. This suggests t h n t  [ and 7 are of order (Qk) and (s*k%), 
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respectively, where V, is the characteristic velocity of energy-containing eddies (cf. 
Leslie 1973, cha. 6). Hence our model (4.1) and (4.2) give T~ = O((&k)-I) and 
rL = O((dk#) - l ) .  These properties are in agreement with our expectation about the 
Eulerian and the Lagrangian velocity correlation functions in a real turbulence, cf. 
e.g. Kraichnan (1964c, 1 9 6 5 ~ ) .  

5. Alternative choices of representatives 
In $2,  we chose & and F given by (2.29) and (2.30) as the representatives and in 

terms of them constructed the renormalized expansions and truncated approximation 
(2.48). However, it is also possible to choose other representatives and to construct 
renormdized expansions in terms of them. 

For example we may choose, instead of F given by (2.30), the following F :  

E j W  = 4 m W  e9,,(k) P,,(k>, (5.1) 

where dmn is the Fourier transform (see (2.28)) of 

Qmn(X, t ;  x', t ' )  = {p3x"@n(X", t ;  x', t ' )  $(X", t ;  x, t ' ) ) ,  ( 5 . 2 ~ )  
or 

Qmn(x, t ;  x', t ' )  = (Id3x"@Jx, t ;  x", t ' )  P,,(V,) $(x', t ;  x", t ' ) ) .  (5.23) 

Here we are assuming the homogeneity of the turbulence as in (2.27) and (2.28). 
Similarly we may choose instead of & given by (2.29) the following &: 

Qij(k) Gi,(k) Pmj(k), (5.3) 

where Q,(k) is the Fourier transform (see (2.27)) of 

Qm(X, t ;  x', t') = (u,.(x, t )  {Jd3x"um(x", t') $(x', t ;  x", t ' ) } )  (t z t ' ) .  (5.4) 

In  the same way as in 5 2, we can construct renormalized expansions by using these 
representatives. By defining scalar functions &(k) and P(k)  as in (2.47) for isotropic 
turbulence, we obtain three approximate equations - energy equation (E), time- 
displaced correlation equation (TD) and response equation (R), which correspond to 
(2.48a), (2.483) and ( 2 . 4 8 ~ )  respectively. For each of the following choices (a)  - (e) of 
the representatives, (E) is identical in form to ( 2 . 4 8 ~ ) .  While the forms of (TD) and 
(R) depend on the choice as follows, in which the brackets [; , . .] denote the choice of 
the representatives. 

Choice (a). [; Qi given by (2.29) and F given by (5.1), (5.2a)l. The form of (TD) is 
identical to (2.483). That of (R) is given by 

( a p t  + vk2) F ( k ,  t ,  8 )  = b(k ,  t ,  8 )  ( t  > s), 
where 

(5 .5 )  

b(k ,  t ,  s) = - 7r kpr dp  dr ds'{d(k,p, r )  &(r, t ,  s') F(k,  t ,  s) slk Ist 
+ [W, P, r )  - ( p 2 / k 2 )  a,(p, k, r)l &(r, t ,  8') F ( p ,  t ,s ' )  P(k, a', s)}, (6.6) 

in which a,(k, p ,  r )  = a(k, p ,  r )  + i(zz - y2). The latter is in accordance with the notation 
of Kraichnan ( 1 9 6 5 ~ ) .  If the second term on the right-hand side of ( 2 . 9 ~ )  is omitted, 
dgj in (2.9) becomes identical to d, in ( 5 . 2 ~ ) .  With this choice of ( 5 . 2 ~ )  we need not be 
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concerned with the above-noted second term of (2 .9~)  or the Y term (e.g. the last four 
terms of (2 .17~~) do not appear). 

Choice (b): [;& given by (2.29) and F given by (5.1), (5.2b)l. The form of (TD) is 
identical to (2.48b). That of (R) is given by 

( a p t +  vk2) P(k,  t ,  8 )  = &k, t ,  8 )  (t > s), 
where 

(5.7) 

+ a,(k,p, r )  F ( k ,  t ,  8’) F(p ,  s’, 8) - W , p ,  r )  q p ,  t ,  8‘) F(k ,  s‘, a)}, (5 .8)  

inwhichc(k,p,r) = (l-yz). 
Choice (c): [; & given by (5.3) and F given by (2.30)]. The form of (TD) is identical 

to the corresponding one in the ALHDI approximation (see eq. (10.5) in Kraichnan 
(1965a), if U and G in the latter are replaced by the present & and F, respectively. 
(It is not difficult to show that for an incompressiblefluid q r ( x ,  t ;  x’, t ‘ )  in (5.4) is equal 
to Kraichnan’s ?&(x, t l t ;  x’, t l t ’ ) ,  cf. (2.22), which may be regarded as one of the re- 
presentatives of the ALHDI approximation.) We call this equation TD of ALHDI and 
do not reproduce here the explicit form of it. The form of (R) is identical to (2.48~). 

Choice (d): [; & given by (5.3) and F given by (5.1), (5.2a)l. The forms of (TD) and 
(R) are identical to TD of ALHDI and (5.5), respectively. 

Choice (e): [; &givenby (5.3) andPgivenby (5.1), (5.2b)l. Theformsof (TD) and (R) 
are identical to TD of ALHDI and (5.7), respectively. 

In  the same way as in Q 3, by assuming (3.3) and the Gaussian-time dependence of 
Q and F as in (3.1) and (3.2), we can estimate the constants a, p and K based on these 
approximations. It can be checked that the integrations over p and r discussed 
in 8 3 converge properly for all the above approximations. The results of the numerical 
computations are as follows. 
Choice (a) : 

Choice (b) : 
K = 1.60, a = 0.81, /3 = 0.79, (5.9a) 

K = 1.51, a = 0.78, p = 0.60, (5.92)) 
Choice (c) : 

Choice (d): 

Choice (e): 

K = 1.47, a = 0-41, f i  = 0.87, 

K = 1.46, a = 0.41, p = 0.86, 

K = 1.30, a = 0.36, /3 = 0-67. 

(5.9c) 

(5 .9d)  

(5.9e) 

(The results given by (3.4) are K = 1.61, a = p = 0.81.) 
It is interesting to note that in spite of the differences between the (TD) and/or 

(R) equations of the above choices the resulting K values are all not very different 
from the experimental value ( - 1-5). The results (5.9) and (3.4) show that the a values 
given by (3.4), ( 5 . 9 ~ 4  b) are nearly twice those given by (5.9c, d,  e). This suggests that 
the characteristic decorrelation time of Q given by (2.29) is nearly half that of Q given 
by (5.3). 

As a check on the above numerical calculations and those of $3, some calculations 
were done concerning the ALHDI approximation, and the results were compared 
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with those of Kraichnan (1965b).  Kraichnan reported that the ALHDI approxi- 
mation yields a = 0-50, /3 = 0.99 and K = 1.60 in the present notation (01, /3 and K for 
the ALHDI approximation are defined in the same way as in the above one). These 
results mean that the time-displaced correlation equation (TD), the response equation 
(R) and (3.3) give 

a2/K 21 0.16, a2/K 2: 0.16 and a/K2 21 0.20, (5.10) 

respectively, for P/a = 1-98. While the author’s calculations gave for /?/a = 1-98 the 
values 0-1 1,0*16 and 0.20 instead of (5.10) in order of appearance. Thus his calculations 
of (R) and (3.3) agree well with those of Kraichnan, but that of (TD) does not. 

Hence it seems to be worthwhile to show some details of the author’s calculation of 
(TD). That of (R) was carried out similarly. By setting the initial time to a t  - co, the 
integration with respect to time can be carried out analytically without difficulty. 
Then the total integral region S = {Ik-pl  < r < k + p }  over the ( p ,  r )  plane was 
divided into several subregions: 

A n = { k - p < r  < k + p , & x 4 - n - I < p / k  cQx4-,) ,  

B, = { k  - r < p < k + r ,  Q x 4-n-’ < r / k  < Q x 4-n}, 

C = { p / k  2 8, r / k  B 3, ( p  + r ) / k  < 2} 

and D, = { k - p  < r < k + p , d ,  c ( p + r ) / k  < dk 

withd, = 2, (d, - 1 ) / , / 2  = 4+’fOr,j 2 1 ,  and (dh - 1 ) / J 2  = 4,}, 
where n, m = 0,  1 ,2 ,  . . . , The contributions from A,, B ,  and Dm with n 2 7 ,  m 2 8 were 
neglected. For example, the absolute values of the contributions to the above-quoted 
value 0.1 1 from A,, B, andD, were all checked to be less than 0.2 x The numerical 
integration of each subregion was carried out by using a library program at the Nagoya 
University Computer Center written by Ninomiya and Hatano. The program is based 
on the automatic quadrature by the Clenshaw-Curtis method. Up to now the author 
has not found out the reason for the discrepancy between Kraichnan’s numerical 
results and those obtained by the author. 

It is clear from the discussions of this section that different choices of representatives 
yield different approximate equations. Similar cases are known in other branches of 
physics. For example, the method of trial function in finding eigenvalues of an operator 
yields different results for different choices of trial functions. Even if different choices 
yield different results, this itself does not detract from the value of the method. The 
success depends on the choice. 

Although at present we cannot judge definitely which choice is best, the choice of 
5 2 seems to be better than choices (a)-(e) for the following reasons: 
(1) the time derivatives of (TD) and (R) of this choice seem to be the most natural ones 
(they are MTD’s); 
( 2 )  the resulting forms of (TD) and (R) are most simple; 
(3) the resulting approximation has a simple model representation as discussed in 

The author is thankful to Professor Ichizo Ninomiya and Ms Yasuyo Hatano for 
their kind advices for numerical computations and to Miss Chiyomi Goto for her help 
in typing the manuscript. 
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